Рубрика: Строительство

Самый большой трансформатор в мире

У каждого технического устройства два дня рождения: открытие принципа работы и его реализация. Идею трансформатора после упорной семилетней работы по «превращению магнетизма в электричество» дал Майкл Фарадей.

29 августа 1831 года Фарадей описал в своем дневнике опыт, вошедший впоследствии во все учебники физики. На железное кольцо диаметром 15 см и толщиной 2 см экспериментатор намотал отдельно два провода длиной 15 м и 18 м. Когда по одной из обмоток шел ток, стрелки гальванометра на зажимах другой отклонялись!

Нехитрое устройство ученый назвал «индукционной катушкой». При включении батареи ток (само собой разумеется, постоянный) постепенно нарастал в первичной обмотке. В железном кольце наводился магнитный поток, величина которого также менялась. Во вторичной обмотке возникало напряжение. Как только магнитный поток достигал предельного значения, «вторичный» ток исчезал.

Д ля того чтобы катушка действовала, нужно все время включать и выключать источник питания (вручную — рубильником или механически — коммутатором).

Иллюстрация опыта Фарадея

Индукционная катушка Фарадея

П остоянный или переменный ?

От фарадеевского кольца до сегодняшнего трансформатора было далеко, а наука уже тогда по крохам собирала необходимые данные. Американец Генри обмотал провод шелковой ниткой — родилась изоляция.

Француз Фуко попробовал вращать железные болванки в магнитном поле — и удивился: они нагревались. Ученый понял причину — сказывались токи, которые рождались в переменном магнитном поле. Чтобы ограничить путь вихревых токов Фуко, Эптон, сотрудник Эдисона, предложил делать железный сердечник сборным — из отдельных листов.

В 1872 году профессор Столетов провел фундаментальное исследование по намагниченности мягкого железа, а несколько позже англичанин Юинг представил Королевскому обществу доклад о потерях энергии при перемагничивании стали.

Величина этих потерь, названных «гистерезисными» (от греческого слова «история»), действительно зависела от «прошлого» образца. Зерна металла — домены, словно подсолнухи за солнцем, поворачиваются вслед за магнитным Полем и ориентируются вдоль силовых линий. Затрачиваемая при этом работа переходит в тепло. Она зависит от того, как — слабо или сильно — и в какую сторону были направлены домены.

Сведения о магнитных и проводниковых свойствах накапливались постепенно, пока количество не перешло в качество. Электротехники время от времени преподносили миру сюрпризы, но главным в истории трансформаторов все же следует считать событие, заставившее мир в 1876 году изумленно обернуться в сторону России.

Причиной стали свечи Яблочкова. В «лампах» горела дуга между двумя параллельно расположенными электродами. При постоянном токе один электрод сгорал быстрее, и ученый настойчиво искал выход.

В конце концов он решил, перепробовав множество способов, использовать переменный ток, и о чудо! — износ электродов стал равномерным. Поступок Яблочкова был поистине героическим, ибо в те годы шла жестокая борьба энтузиастов электрического освещения с владельцами газовых компаний. Но не только это: сами сторонники электричества, в свою очередь, единодушно выступали против переменного тока.

Получать-то переменный ток получали, но что это такое — мало кто понимал. В газетах и журналах печатались пространные статьи, угрожавшие опасностью переменного тока: «ведь убивает не величина, а ее изменение». Известный электротехник Чиколев заявлял: «Надо все машины с переменным током заменить на машины с постоянным током».

Не менее видный специалист Лачинов публично журил Яблочкова, поскольку «постоянный ток годится вообще, а переменный может только светить». «Отчего бы господам — приверженцам свечей (дуговых свечей Яблочкова) не попытаться серьезно применить к ним постоянный ток; ведь этим и только этим они могли бы обеспечить будущность свечного освещения», — писал он.

Не удивительно, что под этим напором Яблочков в конце концов забросил свои свечи, но, кроме частичной «реабилитации» переменного тока, он успел открыть истинное «лицо» индукционных катушек. Его свечи, включенные в цепь последовательно, были чрезвычайно капризны. Как только один светильник по какой – либо причине гас, мгновенно потухали и все остальные.

Яблочков соединил последовательно вместо «ламп» первичные обмотки катушек. На вторичные он «посадил» свечи. Поведение каждой «лампы» совершенно не отражалось на работе других.

Правда, индукционные катушки конструкции Яблочкова отличались (и не в лучшую сторону) от фарадеевских — их сердечники не смыкались в кольцо. Но одно то, что катушки на переменном токе работали беспрерывно, а не периодически (при или выключении цепи), принесло русскому изобретателю мировую известность.

Шестью годами позже препаратор из МГУ Усагин развил (а вернее, обобщил) идею Яблочкова. К выходным обмоткам катушек, которые он назвал «вторичными генераторами», Усагин подсоединял разные электроустройства (а не только свечи).

Катушки Яблочкова и Усагина несколько отличались друг от друга. Если говорить современным языком, трансформатор Яблочкова повышал напряжение: во вторичной обмотке было гораздо больше витков из тонкого провода, чем в первичной.

Трансформатор Усагина разделительный: число витков в обеих обмотках было одинаковым (3000), так же как и напряжения на входе и выходе (500 в).

КАЛЕНДАРЬ ЗНАМЕНАТЕЛЬНЫХ ДАТ

Индукционные катушки Яблочкова и «вторичные генераторы» Усагина стали со сказочной быстротой приобретать черты известных нам сегодня трансформаторов.

1884 год — братья Гопкинсоны замкнули сердечник.

Прежде магнитный поток шел по стальному пруту, а частично — из северного полюса в южный — по воздуху. Сопротивление воздуха в 8 тыс. раз больше, чем у железа. Получить заметное напряжение на вторичной обмотке было под силу только большим токам, проходящим по многим виткам. Если сердечник сделать кольцом или рамкой, то сопротивление снижается до минимума.

Трансформатор 1880-х гг. Brush Electric Light Corporation

1885 год — венгру Дери пришла в голову мысль включить трансформаторы параллельно. До этого все использовали последовательное соединение.

1886 год — вновь братья Гопкинсоны. Они научились рассчитывать магнитные цепи по закону Ома. Поначалу им пришлось доказать, что процессы в электрических и магнитных цепях можно описывать похожими формулами.

1889 год — швед Свинберн предложил охлаждать сердечник и обмотки трансформатора минеральным маслом, которое одновременно играет роль изоляции. Сегодня идею Свинберна развили: в большой бак опускают стальной магнитопровод с обмотками, бак закрывают крышкой и после сушки, нагрева, вакуумирования, заполнения инертным азотом и других операций заливают в него масло.

Трансформатор – конец 19-го – начала 20 века (Англия)

Трансформатор на 4000 кВА (Англия) – начало 20-го века

Токи. Вплоть до 150 тыс. а. Именно такими токами питаются печи для плавки цветных металлов. При авариях всплески тока достигают 300— 500 тыс. а. (Мощность трансформатора на больших печах достигает 180 МВт, первичное напряжение 6-35 кВ, на высокомощных печах до 110 кВ, вторичное 50-300В, а в современных печах до 1200 В.)

Читайте также:  Пристройка к дому кроссворд 7 букв

Потери. Часть энергии теряется в обмотках, часть — на нагревание сердечника (вихревые токи в железе и потери на гистерезис). Быстрое изменение электрических и магнитных п олей во времени ( 50 гц — 50 раз в секунду) заставляет по-разному ориентироваться молекулы или заряды в изоляции: энергия поглощается маслом, бакелитовыми цилиндрами, бумагой, картоном и т. д .

Некоторую мощность забирают насосы для прокачки трансформаторного горячего масла через радиаторы.

И все-таки в целом потери ничтожны: в одной из самых крупных конструкций трансформатора на 630 тыс. кВт «застревает» всего лишь 0,35% мощности. Мало какие устройства могут похвастать к. п . д . больше 99,65%.

Полная мощность. Самые крупные трансформаторы «прикрепляются» к самым мощным генераторам, поэтому их мощности совпадают. Сегодня есть энергоблоки на 300, 500, 800 тыс. кВт, завтра эти цифры возрастут до 1 —1,5 млн. , а то и больше.

Самый мощный трансформатор. Самый мощный трансформатор изготовлен австрийской компанией «Элин» и предназначен для ТЭЦ в штате Огайо. Eгo мощность 975 мегавольт-ампер, он должен повышать напряжение, вырабатываемое генераторами —25 тысяч вольт до 345 тысяч вольт («Наука и жизнь», 1989, № 1, с. 5).

Восемь самых больших в мире однофазных трансформаторов имеют мощность 1,5 млн. кВА. Трансформаторы принадлежат американской компании «Электрик пауэр сервис». 5 из них понижают напряжение с 765 до 345 кВ. ("Наука и техника")

В 2007 году Холдинговой компанией "Электрозавод" (Москва) был изготовлен самый мощный из ранее выпускаемых в России трансформаторов – ТЦ-630000/330 мощностью 630 МВА на напряжение 330 кВ, весом около 400 тонн. Трансформатор нового поколения разработан для объектов Концерна "Росэнергоатом".

Отечественный трансформатор ОРЦ-417000/750 мощностью 417 МВА на напряжение 750 кВ

Конструкция. Любой трансформатор любого назначения состоит из пяти компонентов: магнитопровода, обмоток, бака, крышки и вводов.

Самая важная деталь — магнитопровод — набирается из стальных листов, каждый из которых покрыт с обеих сторон изоляцией — слоем лака толщиной 0,005 мм.

Габариты, например, трансформаторов канадской электростанции Бушервиль (изготовленных западногерманской фирмой «Сименс») таковы: высота 10,5 м , диаметр по сечению 30 – 40 м.

Вес этих же трансформаторов — 188 т. При перевозке с них снимают радиаторы, расширители и выливают масло, и все равно железнодорожникам приходится решать сложную задачу: 135 т — не шутка! Но подобный груз уже никого не удивляет: на атомной электростанции Обрихэйм стоит трансформаторная группа мощностью 300 тыс. кВт. Главный «преобразователь» весит 208 т, регулировочный — 101 т.

Для доставки этой группы на место потребовалась 40-метровая железнодорожная платформа! Нашим энергетикам отнюдь не легче: ведь создаваемые ими конструкции — одни из самых крупных в мире.

Трансформатор весом в 388 тонн! (США)

Работа. Крупный трансформатор действует 94 дня из 100. Средняя загрузка — около 55—65% от расчетной. Это очень расточительно, но ничего не поделаешь: выйдет из строя одно устройство, его дублер довольно быстро буквально «сгорит на работе». Если, например, конструкцию перегрузить на 40%, то за две недели ее изоляция износится, как за год нормальной службы.

Среди студентов давно бытует легенда о чудаке, который на вопрос «Как работает трансформатор? » «находчиво» ответил: «Уууу. » Но только сегодня становится ясной причина этого шума.

Оказывается, виноваты не вибрация стальных пластин, плохо скрепленных между собой, не кипение масла и не упругая деформация обмоток. Причиной можно считать магнитострикцию, то есть изменение размеров материала при намагничивании. Как бороться с этим физическим явлением, пока неизвестно, поэтому бак трансформатора облицовывают звукоизолирующими щитами.

Нормы на «голоса» трансформаторов довольно жесткие: на расстоянии 5 м — не более 70 децибел (уровень громкой речи, шума автомобиля), а на расстоянии 500 м, где обычно стоят жилые дома, около 35 децибел (шаги, тихая музыка).

Даже столь краткий обзор позволяет нам сделать два важных вывода. Основное достоинство трансформатора — отсутствие движущихся частей. За счет этого достигаются высокий к. п . д ., отличная надежность, простота обслуживания. Самым главным недостатком можно считать огромный вес и габариты.

А увеличивать размеры все-таки придётся: ведь мощности трансформаторов должны вырасти в ближайшие десятилетия в несколько раз.

Трансформатор Mitsubishi Electric – 760 МВА – 345 кВ

ГИМН НЕПОДВИЖНОСТИ

Трансформаторы — самые неподвижные машины техники. «ЭТИ НАДЕЖНЫЕ ЖЕЛЕЗНЫЕ КОЛОДЫ. ..» Так, подчеркивая простоту конструкции и большой вес, назвал трансформаторы француз Жанвье.

Но эта неподвижность кажущаяся: обмотки обтекаются токами, а по стальному остову движутся магнитные потоки. Впрочем, всерьез говорить о движении электронов как-то неловко. Заряжённые частицы едва ползут по проводникам, перемещаясь за час всего на каких-нибудь полметра. Между моментами входа и выхода «меченой» группы электронов проходит около года.

Почему же тогда напряжение во вторичной обмотке возникает практически одновременно с включением? Ответить нетрудно: скорость распространения электроэнергии определяется не скоростью движения электронов, а связанных с ними электромагнитных волн. Импульсы энергии развивают 100—200 тыс. км в сек.

Трансформатор «не суетится», но это ни в коем случае не говорит о его «внутреннем» тяготении к покою. Взаимодействие токов в проводниках приводит к появлению сил, стремящихся сжать обмотки по высоте, сместить их относительно друг друга, увеличить диаметр витков. Приходится сковывать обмотки бандажами, распорками, клиньями.

Распираемый внутренними силами, трансформатор напоминает скованного гиганта, стремящегося порвать цепи. В этой борьбе всегда побеждает человек. Но за укрощенными машинами нужен глаз да глаз. На каждой конструкции устанавливают около десятка электронных, релейных и газовых защит, которые следят за температурами, токами, напряжениями, давлением газа и при малейшей неисправности отключают питание, предотвращая аварию.

Мы уже знаем: главный недостаток сегодняшних трансформаторов — их гигантизм. Причина этого тоже ясна: все зависит от свойств применяемых материалов. Так, может быть, если хорошо поискать, найдутся другие идеи преобразования электричества, кроме той, которую предложил когда-то Фарадей?

К сожалению (а может, и к счастью — кто знает), пока таких идей нет, и появление их маловероятно. Пока в энергетике будет царствовать переменный ток и останется потребность в изменении его напряжения, идея Фарадея — вне конкуренции.

Раз нельзя отказаться от трансформаторов, то, быть может, удастся уменьшить их количество?

Можно «сэкономить» на трансформаторах, если усовершенствовать систему подвода тока. Современная городская электросеть напоминает кровеносную систему человека. От главного кабеля ответвляются «по цепной реакции» линии к местным потребителям. Напряжение постепенно, ступенями понижают до 380 в, и на всех уровнях приходится ставить трансформаторы.

Читайте также:  Салат шашлычный рецепт с фото

Английские специалисты детально разработали другой, более выгодный вариант. Они предлагают питать Лондон по такой схеме: кабель на 275 тыс, в входит в центр города. Здесь ток выпрямляется, а напряжение «автоматически» понижается до 11 тыс. в, постоянный ток подаётся заводам и жилым районам, снова преобразуется в переменный и понижается по напряжению. Отпадает несколько ступеней напряжения, меньше трансформаторов, кабелей и связанных с ними аппаратов.

Частота колебаний тока у нас в стране — 50 гц. Оказывается, если перейти на 200 гц, вес трансформатора снизится вдвое! Вот, казалось бы, реальный путь к усовершенствованию конструкции. Однако с увеличением частоты тока в 4 раза одновременно во столько же раз вырастут сопротивления всех элементов энергосистемы, общие потери мощности и напряжения. Изменится режим работы линии, и ее перестройка не окупится экономией.

В Японии, например, часть энергосистемы работает на 50 гц, часть — на 60 гц. Чего проще привести систему к одному «знаменателю»? Но нет: этому препятствует не только частное владение электростанциями и высоковольтными линиями, но и дороговизна предстоящих переделок.

Трансформатор компании ABB

Размеры трансформаторов можно снизить, если заменить сегодняшние магнитные и проводниковые материалы новыми, с гораздо лучшими свойствами. Кое-что уже сделано: например, построены и испытаны трансформаторы со сверхпроводящей обмоткой.

Конечно, охлаждение усложняет конструкцию, но выигрыш налицо: плотности тока увеличиваются до 10 тыс., а против прежнего (1 а) на каждый квадратный миллиметр сечения провода. Однако лишь очень немногие энтузиасты рискуют делать ставку на низкотемпературные трансформаторы, потому что выгода на обмотке начисто нейтрализуется ограниченными возможностями стального магнитопровода.

Но и тут в последние годы наметился выход: или связывать первичную и вторичную обмотки без посредника — стали, или найти материалы, которые по магнитным свойствам лучше железа. Первый путь очень перспективен, и такие «воздушные» трансформаторы уже испытаны. Обмотки заключены в короб, сделанный из сверхпроводника — идеального «зеркала» для магнитного поля.

Короб не выпускает поле наружу и не даёт ему рассеяться в пространстве. Но мы уже говорили: магнитосопротивление воздуха очень велико. Придётся наматывать слишком много «первичных» витков и подавать в них слишком большие токи, чтобы получить заметный «вторичный».

Другой путь — новые магнетики — тоже обещает многое. Оказалось, при очень низких температурах гольмий, эрбий, диспрозий становятся магнитными, причем поля насыщения у них в несколько раз больше, чем у железа (!). Но, во-первых, эти металлы относятся к группе редкоземельных, а стало быть, редки и дороги, и, во-вторых, потери в них на гистерезис окажутся, по всей вероятности, гораздо выше, чем в стали.

Трансформатор ТЦ-630000/330 мощностью 630 МВА рассчитан на напряжение 330 кВ. Его вес – около 400 тонн. Трансформатор нового поколения специально разработан для объектов концерна «Росэнергоатом». Поставка новейшего энергетического оборудования на Курскую АЭС намечена на февраль 2008 года.

Трансформатор выполнен на современном техническом уровне с использованием новых конструктивных и технологических решений. В результате внедрения новейших научно-технических разработок характеристики трансформатора ТЦ-630000/330 значительно превосходят минимально необходимые характеристики по ГОСТу. Так, потери холостого хода снижены на 38 процентов, транспортная масса – на 22,2 процента, полная масса – на 14,5 процента, масса масла – на 12,9 процента.

По техническим параметрам, надежности, удобству монтажа и эксплуатации трансформатор соответствует самым современным требованиям. Его особенность – полная взаимозаменяемость с аналогичным оборудованием, установленным на объектах «Росэнергоатома», что позволяет значительно сократить расходы и время по монтажу.

Трансформатор ТЦ-630000/330 успешно прошел испытания с участием контрольно-приемочной инспекции «Росэнергоатома» на всех стадиях изготовления, принят межведомственной комиссией и в настоящее время готовится к отгрузке на Курскую АЭС.

В рамках сотрудничества «Электрозавода» с концерном «Росэнергоатом» в 2001‑2006 годах на Ростовскую, Смоленскую, Калининскую и Кольскую АЭС будет поставлено энергетическое оборудование суммарной мощностью 1353 МВА. Это автотрансформаторы АОДЦТН-167000/500/220 и АТДЦТН-125000/330, трансформаторы ТРДН-40000/110, шунтирующие реакторы РОДЦГ-110000/750 и РОМБСМ-110000/750. На 2007‑2008 годы заключены договоры на поставку оборудования общей мощностью более 1356 МВА для Нововоронежской и Ростовской АЭС.

«Наша компания долгое время сотрудничает с «Росэнергоатомом» и его филиалами в части поставок электротехнического оборудования для атомных станций, – комментирует коммерческий директор холдинговой компании «Электрозавод» Владимир Синев. – После модернизации наших производств, организации выпуска трансформаторов на площадях Всеукраинского института трансформаторостроения и ввода в эксплуатацию нового трансформаторного завода в Башкирии выпуск продукции предприятиями холдинга увеличится в 3,5 раза. Значительно расширится и номенклатура оборудования, что позволит удовлетворить любые потребности энергокомплекса страны».

Выпуск самого мощного трансформатора за всю историю отечественного трансформаторостроения совпал с юбилеем «Электрозавода», который в этом году отмечает свое восьмидесятилетие. Первенец отечественного трансформаторостроения – московский «Электрозавод» – был открыт в ноябре 1928 года.

Электростанция, АЭС, Мощность, Напряжение , Трансформаторы, Кабельная арматура

Электротехническая энциклопедия

Здравствуйте , уважаемые подписчики!

Cегодня в выпуске:

1. Что такое миниэлектростанция

2 . Самодельная электростанция

3. Школа для электрика: Принцип действия генератора

4. Интересные факты о трансформаторах

Что такое миниэлектростанция

Рассказ о том, какие бывают миниэлектростанции, области их применения и советы по приобретению и эксплуатации. Причины и цели приобретения миниэлектростанций

Автономный источник электроэнергии бывает нужен во многих случаях. Например, это может быть загородный дом – ведь ни для кого не секрет, что в сельской местности перебои в подаче электроэнергии случаются достаточно часто.

Другой случай – строительство,- ведь не всегда возможно подключиться к электросети, а различных механизмов, требующих электроэнергии на стройке немало. Даже отдых на природе веселей и комфортней, если у вас есть портативный электрогенератор: на берегу реки можно устроить дискотеку, освещение, а то и вовсе выступление популярной рок – группы.

Широкое применение портативные электрогенераторы находят в торговле, производстве скоропортящихся продуктов, медицинских учреждениях.

Типы миниэлектростанций

В случае, когда требуется источник питания небольшой мощности, то вполне подойдут бензиновые генераторы, выпускающиеся для бытовых целей. Если же требуется достаточно мощный и надежный источник резервного питания, то в этом случае больше подойдет дизельный генератор.

Как определить мощность миниэлектростанции

При покупке миниэлектростанции, прежде всего следует определить, какая потребуется мощность, какие приборы, инструменты и механизмы Вы собираетесь подключить.

По характеру нагрузки все электроприборы делятся на активные и индуктивные. К активным потребителям относится освещение, электроплиты, электрокамины, чайники и т.п. Такие приборы, как нетрудно заметить, превращают электроэнергию в тепло.

Читайте также:  Розетки под плинтус с кабель каналом

К индуктивной нагрузке относятся те приборы, которые имеют электродвигатели. Это холодильники, насосы, компрессоры, пилы, дрели и многие другие электроинструменты и приспособления. В этом случае происходит преобразование электрической энергии в механическую.

Чтобы определить необходимую мощность генератора в случае подключения активных нагрузок нужно просто определить суммарную мощность всех приборов, которые могут быть включены одновременно. К полученной мощности добавить еще процентов 15…20, если так можно сказать «запас прочности». Это и будет необходимая мощность генератора.

Электрооборудование индуктивного типа отличается тем, что при включении создает большие пусковые токи, поэтому для него суммарную мощность следует увеличить в 2,5…3 раза (250…300 процентов). При таком запасе по мощности работоспособность генератора будет обеспечена должным образом: не будет перегрузок и частых срабатываний защиты.

Если Вы планируете использовать генератор для дачного домика, то, как показывает практика, мощности в 1,5…2 киловатта оказывается предостаточно: все электрооборудование состоит из нескольких лампочек, телевизора и иногда старенького холодильника.

Чтобы частые перебои с электроэнергией не создавали неудобств для владельцев больших загородных коттеджей необходимо приобрести генератор мощностью 10…30 киловатт.

Мощности генератора не более 6 киловатт будет вполне достаточно для строительных работ. В таком варианте будет возможно пользоваться бетономешалкой, болгаркой, дрелью, перфоратором.

Как выбрать дизельную электростанцию

Если потребляемая Вашим оборудованием нагрузка 10 киловатт и более, то на случай долговременных отключений централизованного электроснабжения для нормальной работы электрооборудования лучше применять дизельные генераторы. При длительном использовании они более надежны, нежели автономные бензиновые источники электроснабжения.

Следует отметить, что длительное время работать на холостых оборотах дизельному двигателю просто вредно. Чтобы избежать вредных последствий работы при неполных нагрузках для профилактики необходимо . Полный текст >>>

Самодельная электростанция

Руководство по изготовлению самодельного электрогенератора 220/380 В.

Те, кто часто выезжает за город знают, что полное отсутствие электроэнергии или ее частое отключение совсем не редкость. Люди борются с этим, покупая бензогенераторы или керосиновые лампы и стеариновые свечи.

Но есть и другой способ. Мотоблок, для вспашки и уборки огородов, стал уже народным хитом. Опыт показал, что его можно приспособить для выработки электроэнергии. В качестве генератора можно использовать асинхронный электродвигатель, например серии АИР. Электродвигатель должен быть с частотой вращения 800-1600 об/мин и мощностью до 15 кВт.

Двигатель мотоблока и электродвигатель связывают с помощью двух шкивов и приводного ремня. Диаметр шкивов выбирают так, чтобы частота вращения электродвигателя в качестве генератора, была на 10-15% больше паспортного значения числа оборотов электродвигателя.

Обмотки электродвигателя соединяют звездой, а конденсаторы включаются параллельно каждой паре обмоток. Они образуют треугольник. Напряжение снимается между средней точкой и концом обмотки. Между обмотками получается 380 В, между средней точкой и концом обмотки 220 В. Для поддержания правильного режима пуска и работы генератора, подбираются конденсаторы. Все три конденсатора имеют одинаковую емкость.

Соотношение между емкостью конденсаторов и мощностью генератора, можно посмотреть в таблице . Полный текст >>>

Эта статья опубликована в разделе "Делимся опытом". Рекомендую Вам кроме нее почитать и другие статьи этого раздела – там есть масса полезного. Оглавление раздела

Школа для электрика: Принцип действия генератора

Генераторами называются машины, преобразующие механическую энергию в электрическую. Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.

Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.

Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле . Полный текст >>>

Полезные ссылки:

Интересные факты о трансформаторах

. Токи. Вплоть до 150 тыс. а. Именно такими токами питаются печи для плавки цветных металлов. При авариях всплески тока достигают 300— 500 тыс. а. (Мощность трансформатора на больших печах достигает 180 МВт, первичное напряжение 6-35 кВ, на высокомощных печах до 110 кВ, вторичное 50-300В, а в современных печах до 1200 В.)

Потери. Часть энергии теряется в обмотках, часть — на нагревание сердечника (вихревые токи в железе и потери на гистерезис). Быстрое изменение электрических и магнитных полей во времени (50 гц — 50 раз в секунду) заставляет по-разному ориентироваться молекулы или заряды в изоляции: энергия поглощается маслом, бакелитовыми цилиндрами, бумагой, картоном и т. д.

Некоторую мощность забирают насосы для прокачки трансформаторного горячего масла через радиаторы.

И все-таки в целом потери ничтожны: в одной из самых крупных конструкций трансформатора на 630 тыс. кВт «застревает» всего лишь 0,35% мощности. Мало какие устройства могут похвастать к. п. д. больше 99,65%.

Полная мощность. Самые крупные трансформаторы «прикрепляются» к самым мощным генераторам, поэтому их мощности совпадают. Сегодня есть энергоблоки на 300, 500, 800 тыс. кВт, завтра эти цифры возрастут до 1 —1,5 млн. , а то и больше.

Самый мощный трансформатор. Самый мощный трансформатор изготовлен австрийской компанией «Элин» и предназначен для ТЭЦ в штате Огайо. Eгo мощность 975 мегавольт-ампер, он должен повышать напряжение, вырабатываемое генераторами —25 тысяч вольт до 345 тысяч вольт («Наука и жизнь», 1989, № 1, с. 5).

Восемь самых больших в мире однофазных трансформаторов имеют мощность 1,5 млн. кВА. Трансформаторы принадлежат американской компании «Электрик пауэр сервис». 5 из них понижают напряжение с 765 до 345 кВ. ("Наука и техника")

В 2007 году Холдинговой компанией "Электрозавод" (Москва) был изготовлен самый мощный из ранее выпускаемых в России трансформаторов – ТЦ-630000/330 мощностью 630 МВА на напряжение 330 кВ, весом около 400 тонн. Трансформатор нового поколения разработан для объектов Концерна "Росэнергоатом" . Полный текст >>>

Полезные ссылки:

Сто лет назад это неприметное устройство позволило осуществить на практике распределение электроэнергии. Хотя современная электротехника и телекоммуникации немыслимы без этого устройства, оно остается одним из "невоспетых героев" в истории технического прогресса.

Яблочков считается одним из изобретателей трансформатора. В статье приведены схемы "дробления электрического света" с помощью трансформаторов Яблочкова.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *